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One-Sentence Summary. Which-way detection alters double-slit interference
deterministically through interaction-induced phase evolution, without collapse,
observers, or stochastic dynamics.

Abstract. We present a first-principles, deterministic account of the quantum
double-slit experiment with which-way detectors. Detectors are modeled as
physical circuits possessing energetic barriers and therefore necessarily introduce
localized interaction potentials. These interactions modify the action of electron
paths and rotate the relative phase of each path. The continuous transition
from interference to its suppression follows solely from unitary propagation. All
probabilistic outcomes arise only from the quadratic mapping of the propagated
state after propagation.

Keywords. quantum mechanics, double-slit experiment, which-way detection,
determinism, propagator, path integral, phase evolution

Table of Contents

1. Determinism in Quantum Dynamics 2
2. The Double-Slit Without Detectors 3
3. Modeling the Detector as a Circuit 4
4. The Double-Slit With Detectors 4
5. Phase Evolution Induced by the Detector 5
6. Continuous Suppression of Interference 6



7. No Measurement Postulate Required 9
8. Conclusion 10

9. References 10

1. Determinism in Quantum Dynamics

Quantum mechanics is probabilistic only at the level of outcome statistics. The
dynamical evolution of the quantum state, as governed by the Schrédinger
equation, is deterministic. This statement is independent of interpretational
preferences and concerns only the propagation of the quantum state.

Determinism of ewvolution is not a question.

The evolution of a quantum state (g, t) is governed deterministically by the
Schrodinger equation

Oy K2
ihm = <2mv2 + Zizvi(q,t)> "

This evolution is fully determined by the Hamiltonian —comprising the kinetic
term and the interaction potentials V;(q,t)— together with the quantum state
1. No other consideration is necessary at the level of propagation to calculate
the probabilities at the screen.

In the present context, the Hamiltonian is not an independent or abstract object.
It is a compact representation of the interaction structure of the system. All
terms in the Hamiltonian arise from physical interactions between the electron
and its environment (including the detectors as part of the environment).

In the absence of detectors, the Hamiltonian reduces to free propagation or to
interaction potentials common to all paths, which do not affect relative phases.

When detectors are present, additional slit-dependent interaction potentials are
introduced, modifying the Hamiltonian accordingly.

1.1. The all-paths integral and the propagator

An equivalent formulation is provided by the propagator. The wavefunction at a
spacetime point (x,T) is obtained by the action of the propagator on the initial
state,
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where the propagator, K, is given by the path integral

q(T)== i
K(x,T;x0,0) :/ Dq exp(S[q})
4(0)=xo h

with action

T
Sla) = / dt (;mq'Q—qu,t>>

The propagator contains the full dynamical content of the theory; all interaction
effects enter through its phase. Quantum mechanics is deterministic at the level
of propagation; probabilities arise only from the quadratic map applied to the
propagated state,

P(ZE,T) = |¢("E7T)‘2

2. The Double-Slit Without Detectors

An electron quantum wave, 1, propagates from a source to a screen through two
slits.

In the absence of detectors, the propagation is governed by a single propagator
K, corresponding to free propagation or to interaction potentials common to
all paths.

The wavefunction at the screen point x is obtained by propagating the initial
state through the two available spatial channels, “left slit” and “right slit”,

Y(x) = Yrese (T) + Yrigt ()

where

Yi(x) = /da:o Kéj)(:r,T; Zo,0) ¥ (xo, 0), j = left, right.

Here K, (()j ) denotes the restriction of the propagator to trajectories passing through
slit j. In what follows, the slits are labeled by j =1,2,....

Since “by construction” there is no distinction is between the slits, the propagator
is identical for both path classes.



The probability density at the screen is therefore

P(z) = [¥(2)* = [1]* + 12| + 2Re(1¢3) .

The interference term arises from coherent phase relations generated by the
common propagator acting on the two spatially distinct path families.

3. Modeling the Detector as a Circuit

A detector is not an abstract “observer”. It is a physical device, a circuit of
some kind.

By definition, a detector:

e is a circuit with at least two metastable macroscopic states (“triggered”
and “not triggered”);

e contains an energetic barrier separating those states;

o and therefore requires an energy transfer to cross that barrier and register
a detection event.

Consequently, the presence of a detector near a slit necessarily introduces a
localized interaction between the electron and the detector’s activation circuit,
independent of whether a macroscopic click ultimately occurs.

From the electron’s perspective, a detector defines a spatial region €3 in which
the electron may interact with the detector through an interaction potential Vg,
capable of deterministically triggering when an energetic threshold is crossed.

Within the region €2y, the detector is capable of coupling to the particle and
contributing an interaction term to the action. This interaction produces an
energetic imprint in the phase of the propagated wavefunction and therefore
affects the probability density |1/|?, regardless of the final macroscopic state of
the detector.

4. The Double-Slit With Detectors

When detectors are placed near the slits, the electron propagates in the presence
of an enlarged interaction environment. It is important to emphasize that
the electron does not interact with only one detector or the other. Along all
trajectories, the electron interacts with the full detector environment.

Accordingly, the Hamiltonian contains interaction terms associated with both
detectors, described by localized interaction potentials Vi (g, t) and Va(g, t). These
potentials are present for all paths; what distinguishes the two slit contributions is
not the presence or absence of an interaction, but the relative weight with which
these interaction potentials contribute along different classes of trajectories.



In propagator language, the wavefunction at the screen point x is written as

1/’($7T) = ¢1($5T) +7,[}2([E,T)7

with each contribution obtained by propagating the initial state through the
corresponding spatial channel,

quj(xaT) = /dzo Kj(‘raT; 1‘070) 7/1(55070), j = 1a2

The restricted propagators K; can be expressed as

(7)==
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Kj(x,T;x0,0) =/ Dq exp [h/ dt (3mg* — Vi(q. t) — Va(q, 1)) | ,
q(0)=xo 0

where the functional integral is restricted to trajectories belonging to slit-class
j- The interaction potentials V; and V5, are present for all paths; what distin-
guishes the two classes is the relative contribution of these potentials along the
corresponding trajectories.

The physically relevant quantity controlling interference is the action difference
between the two slit contributions, which defines the relative phase A¢:

1 /T
Afb:ﬁ/o dt (Vi — Va).

5. Phase Evolution Induced by the Detector

Define the action increment associated with each detector interaction:

AS; = f/dth(q,t).

Only differences between these increments affect interference. The relative phase
is

86 = (as:-a8) = ¢ [ar(vi-va).

The total amplitude is therefore



Here the superscript (0) in w](_o) denotes the reference amplitude computed for
free propagation, or equivalently for symmetric interactions that do not produce
a relative phase.

5.1. Recovering Double-Slit Pattern with Two Detectors

The probability density P(z) of finding the electron in some point in the screen
calculated as:

Pla) = o) = (0f” +e00?) (4" +em o)
SO
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The last two terms are complex conjugates, hence

P(2) = 0" 2 + [9f"2 + 2Re (e ).

If Vi = V5, then A¢ = 0 and therefore

P() = [\ + [ + 2Re(u{""ui”)

which is precisely the full double-slit interference expression.

6. Continuous Suppression of Interference

Recall the expression for the probability density P(x) to detect the electron at
position x on the screen:

P(a) = [$17[2 + [v§" 2 + 2 Re (4" ei29)

The probability density at a point on the screen depends on the relative phase
A¢[V1, Vo] through the rotation factor e’29.

That is, the mere presence of a detector modifies the probability distribution not
by recording an outcome, but by altering the phase structure of the propagated
amplitudes.

When the two slits are energetically symmetric, such that V3 = V5, the phase
difference vanishes, A¢ = 0, and the interference term contributes maximally.
In this case the familiar double-slit pattern is recovered. The visibility of



the interference pattern therefore directly reflects the symmetry of the slit
interactions.

When a detector is present near one or both slits, the corresponding interaction
potentials generally differ, V7 # V5. The resulting phase difference modifies the
interference term and alters the probability distribution at the screen. This
effect occurs independently of whether the detector ultimately triggers.

6.1. Detector triggers or does-not-trigger

To make the “triggers / does-not-trigger” point explicit, introduce a detector
outcome variable r; € {0,1} for slit j, where r; = 1 denotes a macroscopic firing
event and r; = 0 denotes no firing. Crucially, the interaction potential V; is
present in the Hamiltonian independently of the value of 7;; r; labels a detector
outcome, not the existence of an interaction.

Accordingly, the screen amplitude must be written as an amplitude conditioned
on detector outcomes. In the simplest which-way arrangement (exactly one slit
is correlated with exactly one detector), the joint amplitude takes the form

U(z;7r1,1r2) = Y1(2) 0ry 10r5,0 + V2(2) 6ry 00751,

where ¢ is the Kronecker delta.

The expression describes a superposition of two propagation channels: the slit-1
contribution correlated with the detector-outcome channel (ri,72) = (1,0), and
the slit-2 contribution correlated with (r1,72) = (0, 1).

The quantum wave functions ¥ (z) and s (x) correspond to the propagated
waves computed at the screen, in position x, with the interaction potentials, V3
and V5 included in the action delta, AS; = — [dt V;(g, ).

If one does not condition on the detector outcomes, the observed probability
at the screen is obtained by summing explicitly over all detector outcomes
r1,To € {0, 1}:

P(z) = Z [T (2571, 70) |
71,72

= |U(z;1,0)* + [¥(2;0,1)|? + [¥(x;0,0) > + [¥(z; 1,1)|?.

For typical which-way arrangements , only the outcomes (r1,72) = (1,0) and
(0,1) contribute, with

\P(Ivlvo) :wl('x)? \I/(I7O, 1) :7/12@);

while



U(x;0,0) = ¥(x;1,1) =0.

Therefore,

P(x) = |1 (2)]* + [¢a2(2)]*.

The cross term 12 is absent because the two slit contributions occupy orthog-
onal detector-outcome channels (classically either one detector fires, none or
both cases are not typically considered).

This absence is independent of whether a detector fires; it follows from summing
over distinct outcomes rather than conditioning on one.

No interference term appears in this unconditional probability, because the two
slit contributions occupy disjoint detector-outcome channels (r1,72) = (1,0) and
(0,1).

This shows explicitly that the disappearance of interference is a deterministic
consequence of the interaction potentials associated with the detectors. The
interaction potentials V; are present during propagation regardless of whether a
macroscopic firing event occurs.

6.2. Ideal scenarios

The above Kronecker-delta form represents an idealized which-way detector with
perfect efficiency and exclusive triggering. In general, non-ideal detector response
permits additional outcome channels. The most general two-slit form can be
written as

U(wyry,ra) = i(x) all), + o) al?),,

where ag)ﬂé is the detector response amplitude for outcome (r1,72) conditioned
on the slit-class j.

Summing over outcomes yields

P(a) = > [W(w;r1,m2)” = |1 + []? + 2Re (Wz > aﬁi?maﬁf?i) '

71,72 1,72

Thus the interference term is controlled by the overlap factor

1 2)*
I'= Z a£’1)77‘2a7("1)77'2'

71,72



Ideal which-way detection corresponds to I' = 0 (distinct outcome channels); full
interference corresponds to I' = 1 (indistinguishable detector response).

6.3. Atypical cases, or predictions of the mechanistic view

The mechanistic view of detectors as energetic thresholds opens the posibility of
both detectors firing and the electron be found in the screen.

If both detectors fire, the corresponding detector response implies that the
interaction experienced by the wave was effectively symmetric between the
two slit regions. In such a case, the relative phase difference vanishes and the
double-slit interference pattern is recovered.

Similarly, if neither detector fires and the electron is nevertheless detected at
the screen, the wavefunction must have evolved under the combined detector
potential into a configuration with negligible amplitude in the detector regions.
This evolution again corresponds to an effectively symmetric interaction and
therefore permits interference.

Detector outcomes label macroscopic response channels of the detector apparatus;
they do not identify microscopic trajectories. In particular, outcomes such as
(r1,72) = (1,1) or (0, 0) reflect how the detector circuitry responds to the incident
wave, not where the electron “was” in a particle sense.

When both detectors fire, the interaction potentials have coupled to wave ampli-
tude in both slit regions.

6.4. Wave-Mechanical “Tunnel Effect”

It is instructive to note that, because the detector interaction potentials are
spatially extended and possess nontrivial spatial structure, the Schréodinger equa-
tion admits solutions in which the electron wavefunction is strongly suppressed
—potentially vanishing— within the detector regions while remaining finite at
the screen. This behavior arises from wave interference under the combined
potential Vi 4+ V5 and does not rely on penetration of a classically forbidden
region.

Transmission to the screen without detector triggering is therefore a purely
wave-mechanical, deterministic effect. It reflects the fact that a wave —quantum
or electromagnetic— is defined over all allowed space and can develop nodal or
near-nodal regions as a consequence of its interaction with structured potentials.

7. No Measurement Postulate Required

At no stage does the description require:

o wavefunction collapse,
¢ stochastic dynamics,



e observer dependence,
o information-based causation, or
¢ interpretational assumptions.

The electron evolves deterministically under unitary propagation. Probabilities
arise only after applying the quadratic map to the propagated state.

The disappearance of interference is a consequence of deterministic phase evolu-
tion under interaction. Nothing else is required.

8. Conclusion

We have shown that, by following the deterministic evolution of an electron
traversing a double slit in the presence of which-way detectors, one can recover
continuously either the double-slit or the single-slit interference pattern without
appealing to observers, information-theoretic notions, or quantum mysticism.

By treating the quantum wave as a literal wave evolving under electromagnetic
interaction potentials, we also uncover clear mechanistic explanations for phe-
nomena commonly described using tunneling or nonlocal transfer language. Such
effects arise from global wave propagation and interference under structured
interactions, and do not require stochastic jumps, collapse, or special postulates
beyond unitary quantum dynamics.
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